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Abstract. A general theory for the calculation of second-order Iahn-Teller reduaion factors 
for strongly coupled vibronic systems has already been developed. It was based on symmetry 
arguments and gave results applicable to orbital triplet systems of all symmetries. This paper 
describes further developments and improvements (hat have been made in the general theory. 
As before. symmetry arguments dominate the analysis, which has two distinctive fatures. 
Firstly. by using a more fundamental definition of the orbital operators required than lhat used 
previously. it is shown how the problems encountered previously in attempting to apply the 
previous formalism to orbital doubler E @ e  systems are avoided. Secondly, the derivatian of 
general formulae from which symmetry-adapted phonon states may be derived is presented. It is 
shown that their use in preference to the symmetry-adapted vibronic states used before simplifies 
the calculalion of the oscillator overlaps required. Also, excited-state enewes may be obtained 
directly as they can be expressed as the sums of various reduced matrix elements among the 
excited phonon states. AS an example, the general method is presented in detail for the svongly 
coupled E @ e Jahn-Teller system. 

1. Introduction 

In studies of the Jahn-Teller (rr) effect in solids, the effects of perturbations acting within a 
vibronic system are frequently expressed in terms of an effective Hamiltonian in which the 
electronic terms are multiplied by various parameters referred to as reduction factors (RFS). 
They are called ‘first-order’ or ‘second-order’ according to the order in perturbation theory 
in which the perturbation V appears (Ham 1965). In strong coupling, second-order RFs 
become particularly important in modelling real systems as the first-order RFS are small in 
many cases. For many years, various studies of JT systems have been undertaken by many 
authors (see, for example, the book by Bersuker and Polinger 1989). In particular, second- 
order RFs have been calculated both numerically (see, e.g., O’Brien 1990) and analytically 
for many systems. Among the analytical approaches to the problem, Bates and Dunn 
(1989) calculated the second-order RFs based on an initial unitary transformation followed 
by an energy-minimization procedure. Subsequently, further improvements in the latter 
method were made by using projection-operator techniques to conshxct analytically a set 
of symmetry-adapted excited vibronic states @unn et al 1990). 

In a recent paper, Polinger etal (1991) developed a much more general method for the 
derivation of second-order RFs. The analysis was based entirely on symmetry grounds. It 
was shown that the second-order RFs could be deduced from the evaluation of the sums of 
various overlaps of phonon states. Within this general formalism, the transformation method 
and projection-operator techniques (Bates eta[  1987, Dunn et al 1990) were needed for the 
calculation of symmetry-adapted vibronic states and corresponding excited-state energies. 
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This general method has proved to be very efficient. However, as Jamila (1993) originally 
showed, the general formalism fails whenever the system is of an E@e type. (This notation 
refers to an orbital doublet system coupled to the e-type vibration of the crystal.) Also, 
since the starting point is the vibronic states, the calculations of the excited-state energies do 
not employ fully the symmetry properties of the system and thus it can be rather laborious 
to extract phonon states of a given symmetry from the vibronic states. 

The aim of this paper is to overcome the problem of the calculation of second-order RFs 
for the E 8 e  IT system so that the symmetry-adapted method is applicable to all IT systems. 
Also, we give the general expressions for the symmetry-adapted phonon states so that most 
calculations are simplified to the evaluation of the sums of various reduced matrix elements 
from the symmetry-adapted phonon states. Thus all calculations of RFs and energies are 
then based entirely on symmetry grounds and there is no need for extracting phonon states 
from vibronic states. Finally, an application to the strongly coupled E @ e IT system is 
presented to demonstrate how this improved formalism can be applied to a specific system. 

Y M Liu et a1 

2. Mathematical background 

2.1. The vibronic Hamiltonian 

Consider a molecule or an impurity ion embedded in an otherwise perfect crystal. For 
such a polyatomic system, the cluster model is used such that the impurity ion is primarily 
affected by its immediate surroundings with ions further away playing a less significant role. 
Excluding the degrees of freedom corresponding to translations and rotations of the system, 
the Hamiltonian describing the cluster consisting of the ion and its nearest neighbours can 
be expressed as follows: 

(2.1) 

where r represents electronic degrees of freedom (both space and spin) and Q represents 
degrees of freedom of the nuclei. The first term X ( r )  describes the electronic kinetic 
energy and electron-electron interaction, T ( Q )  is the nuclear kinetic energy and V(r ,  Q) 
the electron-nuclear and nuclear-nuclear electrostatic interactions. Assuming that the 
amplitudes of the nuclear vibrations are small compared with the ion-ligand separation, the 
potential V ( r ,  Q )  can be expanded as a power series about the equilibrium configuration 
terminating at the quadratic term (Bersuker and Polinger 1989). Further simplifications can 
be made by the assumption that the crystal-field energy level of interest is well separated in 
energy from the other levels, so that the mixing of electronic states from different crystal- 
field levels can be ignored. The calculations can thus be confined to states within the 
particular level of interest. In terms of symmetrized normal coordinates, the vibronic 
Hamiltonian can thus be approximated to 

(2.2) 

‘Mr ,  Q )  = X ( r )  + v ( r ,  Q )  + T l Q )  

X(r ,  Q )  = Xu +Xi + ‘H, 

‘H, = HLF LAB with = (P&Ppr + i p r6Q$)  

where 

r 

(2.3) 
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where. QrY are the normal coordinates, which transform according to the component y of 
the irreducible representation (IR) r of the appropriate point group and Pry are the momenta 
conjugate to the Qp,. (The index r represents both different and repeated identical Rs.) In 
the above expressions, we note that the totally symmetric AI term in ' X i  will only give rise 
to a constant energy shift of all the levels and thus it can be ignored. Also, the quadratic term 
that transforms with A, symmetry is the nuclear elastic energy, which has been included 
in H,. Lry are orbital operators such that their matrix elements between electronic basis 
states are the Clebsch-Gordan (CG) coefficients 

(Cui lLry I C c j )  = (r y Xuj I C u i ) .  (2.4) 

Vr and W,'"" are the linear and quadratic vibronic coupling constants respectively with the 
second-rank tensors defined by 

Thus equation (2.4) defines the orbital operators L r v .  For specific cases, other forms of 
orbital operators can be chosen such as Eo, E<, TIy, T,, and T,, for a triplet system (Bates 
and Dunn 1989) or TI and T, for a double system (Badran and Bates 1991). The orbital 
operators Lry  differ from them only by constant factors, which wegive in table 1. However, 
here it is convenient to introduce these equivalent orbital operators to facilitate the analysis. 

Table 1. The relation between the different orbital operators used here and those used previously. 

Badran and Bates (1991) 
used for E @ e  system 

Bates and Dunn (1989) 
used for T @ (e + td system Present mmr 

2.2. The vibronic eigenstates and their energies 

As in the article by Polinger et a1 (1991), the vibronic eigenstates of the Hamiltonian (2.2) 
can be written as an expansion with respect to the electronic stares [Xu) in terms of CC 
coefficients in a convoluted form 

where (Xuhh 1 r y )  are the CG coefficients and IN(r)AA) are functions of the nuclear 
coordinates Q and thus represent the phonon states. The index N is used to distinguish 
between equivalent IRs such that the energy increases as N increases. Since the Hamiltonian 
(2.2) is a scalar of the appropriate point group and as the vibronic states I N r y )  transform 
as components of the IR of the same group, the energy values can be derived directly by 
evaluating the diagonal matrix elements: 

.Er) = (Nryl 'H(r ,  Q ) l N r y ) .  (2.7) 
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This is an obvious consequence of selection rules. Substituting (2.2) and (2.6) into (2.7) 
and using the identity 

(2.8) 

where the large square brackets [. . .I denote 6 r  symbols, which are equivalent to the W 
coefficients of Griffith (1962) and V ( .  , .) are the V coefficients, we obtain 

(2.9) E p  = E;) + E;? + E;;) 

where 

In the above, the symbols ( 11 . . .]I 1 are the reduced maiiix elements and the small square 
brackets denote the dimensionality of the 1R r. For the cubic groups 0, Oh and Td, the phase 
factors (-I)jCr) are given by (-l)j(*l) = (-1)jmd = 1 and (-I)j(*l) = ( - 1 p )  = -1. 

2.3. Reduction factors 

The effects of a perturbation V on the ground vibronic state IOCu) can often be described 
by a so-called effective Hamiltonian containing RFS that multiply the original electronic 
perturbations. The Ws are introduced by the requirement that the matrix elements of 
the effective Hamiltonian within the electronic basis states are identical to those of the 
perturbation Hamiltonian within the ground vibronic basis states (Bates et al 1987, Bates 
and Dunn 1989). 

Consider a purely electronic perturbation 

(2.11) 

where Lry are orbital operators as defined before and Cry are the coefficients of the 
symmetry r y  of the perturbation V .  In the first order, the effective Hamiltonian is given 
by 

where K(')(r) are the first-order RFs, defined as 

(2.12) 

(2.13) 
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In (2.13), the ground vibronic states can be obtained from (2.6) and have the form 

1OZu) = ~ I C 5 ) I O ( C ) A A l ( C ~ A A  I Ea). (2.14) 
bhA 

On calculating the matrix elements within the states (2.14), a general expression for the 
first-order RFS is obtained, namely (Bersuker and Polinger 1989) 

In second order, the additional splitting can be described by 

X'Z' = VC(Z)V 

where 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

As in the first-order case, we can obtain the second-order effective Hamiltonian X$/ by 
replacing .Cylr in (2.18) by the products of appropriate second-order RFS, multiplying 
appropriate orbital operators. In the article by Polinger etal  (1991), the orbital operators 
were chosen to be the bilinear combinations of the operator Lry  such that 

FMp(rr Q rf) = CLrknLnn(rrYwrwI I W .  (2.20) 
f i n  

Thus the second-order RFs are given by (Polinger etal  1991) 

f$(rk Q r,) = ~ ~ c ~ ~ ~ ~ ~ ~ I ~ ~ u , ~ / ~ ~ I u ~ I F ~ ~ I ~ u ~ ~ .  (2.21) 

Unfortunately, this definition is only valid for the triplet system. For the doublet system, we 
have a zero in the denominator, so this expression for the second-order RF cannot be used. 
Indeed, by taking both perturbations V to correspond to strains of E symmetry (denoted by 
the notation E Q E) for the E Q e JT system, we have r, = r, = C = E. Then for M = E, 
we have therefore 

(EIIFE(EQE)IIE) = [El(-]) (2.22) 
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Hence the bilinear combinations of LEO do not contain irreducible tensors of the E type. 
This is because the reduced matrix element is zero although it is not restricted by the 
selection rules of group theory: E 8 E = AI 8 A2 8 E. To solve this problem, we note 
that the choice of the orbital operators within the effective Hamiltonian is not unique. As 
mentioned above, the only requirement is that the matrix element of the product of the RF 
and the orbital operator within ( ICu) ]  are identical to those of the effective operators L w r  
within ([OCu)). Therefore, instead of using the bilinear orbital operators FM&, we can use 
the linear orbital operators L M ~  and redefine the second-order w as 

KE)(rk 8 r,) = ( o c u ~ ~ ~ ~ ~ I o c u ~ ) / ~ c u ~ I L ~ ~ I c u ~ ~ .  

Y M Liu er a1 

(2.23) 

Thus the second-order effective Hamiltonian has the form 

After much algebra involving the using of the identity (23) and the orthogonality condition 
for the V coeficients, and using the expression (2.23), we obtain 

where 

(2.26) 

with 

S N ( Q A C )  = ~ ( - l ) ” ‘ ’ ( O ( C ) M I I N ( A ) M ]  A . (2.27) 
M I]” “I 

In contrast to the corresponding expression (2.19) of Polinger et a1 (1991), there is no 6r 
symbol in the denominator of the general expression (2.25) for second-order ws. 

It is possible therefore to use equation (2.25) and reconsider the case of the perturbations 
(e.g. strain) of the form E 8 E within an E term without causing any problem. The three 
second-order RFs can easily be presented in terms of the R functions inh.cduced in (2.26) 
in the form 

+ RA, + R A ~ )  KE)(E @ E) = 

KA:)(E 8 E) = f i ( 2 R ~  - RA, - RA,) (2.28) 

(2) KE (E 8 E) = ~ ( R A ,  - RAJ 

It is also interesting to apply (2.25) to the example of spin-rbit coupling within a TI  ion. 
In this case, we have rk = i-1 =TI and 6 = TI. Substituting into (2.25) gives 

KE’(T1 8 TI) = - & ( ~ R A ,  + 6RE + ~ R T ,  + 9&,) 

(2.29) 
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The second-order RFs given in (2.29) differ from those given by Polinger et a1 (1991, 
their equation (2.27)) only by some constants due entirely to the different definitions of the 
symmetrized orbital operators. However, the effective Hamiltonian remains the same. These 
examples demonstrate clearly that the improved general expression (2.25) is applicable to 
all strongly coupled JT systems. 

3. Symmetry-adapted phonon states 

The expressions derived in section 2 are based entirely on symmetry arguments and can be 
applied to all ranges of coupling strengths and to all types of vibrational mode. In order 
to use these general expressions for the calculation of reduction factors, it is necessary to 
obtain all the relevant symmetry-adapted phonon states we need. Apart from the example of 
T@ e, this is a very difficult problem and thus approximate methods have to be employed. 
For example, Bates and Dunn (1989) obtained expressions for such vibronic states, which 
were strictly valid only in the infinite coupling, which were based on an initial unitary 
transformation followed by an energy minimization. It is convenient to outline the principles 
of this method here because it is directly applicable to the requirements of our calculations. 

It is well known that, for strongly coupled systems, the cluster can be considered to be 
frozen into one of the minima or wells in the potential energy surface in Q space. In order 
to find the eigenstates in each well, we define the unitary transformation operator 

where Pj is the momentum conjugate to displacement Qj and aj are the free parameters to 
be chosen to fix the system into one of the wells. On applying this unitary transformation 
to the vibronic Hamiltonian (2.2), we obtain 

R = U+H(r,  Q)U = R, + g2 (3.2) 

where 

(3.3) 

In the above, Rz contains terms containing phonon operators, which therefore couple the 
ground and excited vibronic states, while 'l?, contains only orbital operators. Consequently 
when determining the ground states of the system in the strong-coupling limit, only 
needs to be considered. can be diagonalized by using the purely orbital basis [CO)  and 
then the energies E(aj )  can be minimized with respect to aj by setting 

a ,qui)puj  = D. (3.4) 
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After this procedure, the values of the parameters a?’ are obtained together with the 
associated eigenstate and energy eigenvalues for each well k. The ground vibronic 
eigenstates are denoted by [X“); 0) with the ‘0’ denoting no phonon excitations and where 

Y M Liu et  ai 

IX“’) = Cgk’lxo) (3.5) 
0 

where ,E$’ are constant coefficients. These states can then be transformed back to the 
original space by multiplying them by 

(3.6) 

to obtain the untransformed states UklXck l ;  0). However, since 62 contains phonon creation 
operators, it will add phonon excitations to the ground vibronic states. Thus an improved 
set of basis states to diagonalize the full Hamiltonian can be expressed as 

where lY“)) denotes phonon states. However, the problem with this approach is that the 
matrix to be diagonalized will be very large and thus render the calculation impractical. 

An altemative procedure is to use projection-operator techniques (Dunn 1989). The 
projection operators are defined as 

p) = U,IX(”); Y”’) (3.7) 

(3.8) 

where h is the order of the group, R is an element of the group, and Dcr)(R) is the matrix 
representative of R with PR the Hilbert space operator conesponding to R.  Therefore by 
applying the projection operator to the states a complete set of symmetry adapted 
states 

(3.9) 

can be derived. “his approach exploits the fact that the Hamiltonian for the system will 
have the same cubic symmetry as the cluster being modelled, so the resulting eigenstates 
of the system must possess the same cubic symmetry, However, in all our expressions for 
the calculations of energies and RFs, only symmetry-adapted phonon states are needed. We 
thus deviate from the procedure first given by Polinger et al (1991) and directly extract the 
phonon states from the vibronic states. To do this, we compare (3.9) with (2.6). After much 
algebra which involves the use of the identity 

we obtain 

(3.10) 

(3.1 1) 

where Nr are normalizing factors thal can be fixed by the condition 
CuW“(r)N = 1. (3.12) 

The general expression (3.1 1) thus enables us to construct symmetry-adapted phonon states 
after deriving the infinite-coupling states by the transformation method. The calculations 
can be started from any specific well so that k can be chosen to simplify the calculation. 
In the following section we will illustrate how the method an be applied to a specific IT 
system. 

A 
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4. Applications to E @ e JT systems 

4.1. Phonon states 
The infinitecoupling states for the E @ e  JT system have been calculated by Badran and 
Bates (1991) and the parameters needed for calculations are available (see table 2). In 
this case, it is convenient to choose k s z so that ,5$) = 6,s and = l8.!6:) where 8/ 
denotes the presence of p excitations of the @,-type phonons, etc. Therefore (3.11) can be 
rewritten as 

In order to obtain the phonon states, we have to fix F y  and Ah. For E c3 e systems, r 
and h are all the possible IRs contained within the direct product E c3 E @ E . .  .. This 
means that they can be of AI,  A2 or E symmetry only. We note that the phonon states in 
(4.1) are independent of the component y of the IR r. Thus by considering the possible 
combinations of r and AA, there should be twelve different types of phonon state. However, 
another restriction originates from the V coefficients contained within (4.1), which requires 
that r c3 A must give symmetry ‘c = E. Therefore, phonon states corresponding to the 
combinations (r, A) = (AI,  AI), (AI,  A*), (Az, AI)  and (A*. A2) do not exist. Thus from 
the above symmetry analysis, we can obtain just eight different types of phonon state. 

Table 2. The parameten SLk’ and CLk’ where J = K E / ~ o E .  KE = -Jf;Tisiii;lV~I. 
4- = -&/4(1 - L), and L = I W ~ E l / 2 ~ ~ .  

We assume now that the associated ion occupies a site of Td symmetry. Therefore, 
inserting the appropriate V coefficients and projection operator for the point group Td into 
(4.1), we obtain 

IN(A,)EO} = -(1/3&)NA1[UxI0,P62) + UYl6’y”c;) - 2U,lOpc:)] 

IN(Al)E6} = (l/&)NA’[Us18!6~) - Uy10yP6y4)1 

IN(A*)EO] = -(1/&)NA’[U,18!6!) - Uy10y”6,”)] 

IN(Az)EEJ = -(1/3&)NA’[U,I0,Pc!) t Uy18yP6y9) - 2U,lOp~;I)l 
(4.2) 

I N ( E ) A ~ ~ I  = ( I / ~ & ) N ~ [ U ~ I ~ , P G : )  + uyieypE;) + U~IS~E,P)I 

IN(E)EB) = $E[uxie,Pq + uyieyP6;) - ~ U ~ I O ~ C , ~ ) ]  

IN(E)EE] = - ( ip&)~~[~ , i e ,p~: )  - uyiey”6;). 

IN(E)Azht = 0 

In deriving the phonon states for r = E, we fixed y = 8. Also for the states of r = A1 to 
be non-vanishing, q must be even and similarly for the states of r = A2, q is odd. 
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4.2. Normalization facfors 
The normalization factors within the above expressions of symmetry-adapted phonon states 
are determined by the condition (3.12). Let r = A 1 ,  AZ and E so that we have 

Y M Liu ef al 

(4.3) 

In substituting (4.2) into (4.3). symmetry links between the overlaps of the forms 

Mob = (e,‘€,‘lU,‘Uble[€z) (4.4) 

can be used to simplify the calculations. It is well known that the elements PR of the point 
group are unitary operators and the above overlaps will not change the values under the 
unitary transformation. Therefore we have 

(4.5) (e:€: I U: pRPR+ubie[~bp) = (e:.: I U,‘ ubre,”& 
Using (4.5), i t  is easy to prove that 

Mxy = Myz = M u  (4.6) 

and 

M,= = (epqq+u,ie!q = s m p ,  p , q , q )  (4.7) 

where the function l l ( p ,  r. q ,  s) is defined by 

with 

(4.9) 

(4.10) 

(4.11) 



Cy’ = -a:”’ = -. (4.13) 

Table 2 gives the values of the parameters Cy’ while the phonon creation and annihilation 
operators are defined by 

bjlnj) = m l n j  + 1) bjlnj) = &Inj - 1). (4.14) 

The matrix elements of the phonon creation and annihilation operators can be evaluated 
using the symmetry-adapted phonon states of (4.2). Symmetry properties similar to those 
displayed in (4.6) and (4.8) and the commutation relations 

(4.15) 

can be employed to simplify the calculations. The final results are given by the general 
expression 

E$M) = f i M N r ) * [ E i ( ~ .  4. J ,  L )  + c r E z ( p .  4. J ,  L)1 (4.16) 

where CA,  = C A ~  = 2, CE = -1. The functions E t ( p ,  q ,  J ,  L )  and E z ( p ,  q ,  I ,  L )  are given 

E l ( p , q ,  J . L ) = $ 2 [ p + q +  1 + 4 J 2 ~ ~ l - 4 ~ J z ~ - + ~ L [ p - q + 8 J z ~ ~ 1 )  

by 

(4.17) 



4.4. Reducrion factors 
Now consider the calculations of the second-order RFs for perturbations that are both of 
Etype symmetry. As noted above, the general formula given by Polinger et a1 (1991) 
cannot be applied in this case. It is interesting to use instead the improved formula (2.25) 
for this problem. In (2.28), the second-order RFS have been obtained in terms of the R 
functions which, after substituting rl = rt = E  and = E into (2.26) and with A = AI, 
A2 and E, are given by 

(4.19) 

RE = C(EC’ - E ~ ~ ) - ’ [ ~ ( O ( E ) A I I I N ( E ) A , ] ] ~ .  
N 

Thus i t  is seen that we only need to evaluate the overlaps between the appropriate phonon 
ground and excited states to derive the second-order RFs. Also, all the excited phonon 
states needed are available in (4.2) and the ground states can be obtained by simply taking 

where 

for q even 

for q odd (4.20) 

for q even 

(4.21) 

and where the definitions of J and q4- are given in the caption to table 2. 20). NE(0) 
and E,”) are the normalization factor and the state energy respectively corresponding to the 
ground vibronic state of the system, and ‘0’ denotes that p = 

Figure 1 shows a typical variation of Kx), KE) and Ki’as functions of K@WE 
calculated from the formulae given above; for illustrative purposes, the warping parameter 
L was taken to be 0.1, It can be seen that, as in all previous calculations, the RFs rise to a 
maximum value at slightly different values of K E / ~ ~ w E  and then fall away to zero. In the 

0. 
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modelling of real systems K:) and Kf) are the most important and their non-zero values 
for finite values of the coupling constant show where perturbations have their largest effect. 
However, the magnitudes of the contributions depend upon the system under consideration 
and the relative values of the other parameters. The formulae given above may be used 
directly to determine the sizes of the RFS once these other parameters are known. Our 
results are identical to those given by Badran et al (1993) where a long-handed method of 
calculation was employed without the use of s y m e h y  properties except in the display of 
the results. However, it is necessary to point out that there is an error in the expressions (4.5) 
of Badran e ta l  (1993); the functions RA, and RA% are correct but in the expression of Kz) 
they were given with the same sign which is incorrect. Thus the values of Kf) calculated 
there are larger than the correct values given in this paper. Also, the result KE) = 0 quoted 
in equation (4.5) of Badran et al (1993) is not, in general, the correct result for this system. 
We note also that it is not easy to find a perturbation of A2 symmetry, which is needed in 
the long-handed method for calculating KE). 

Figure 1. Plots of the second-order reduction factors K f ! ,  K E )  and KA2) as functions of 
KEF- with L = 0.1, A total of 25 phonons were used in the computations (that is, 
N = p + q  =25). 

5. Conclusions 

In this paper, we have improved the general method of calculating second-order RFs given 
originally by Polinger etal (1991) in two ways. Firstly, the original formalism was only 
valid for an orbital triplet ion. It has been shown here that the improved method can be 
applied not only to mplet systems but also to doublet and other systems. Our results for 
triplet systems differ from those of Polinger el al (1991) only by constants. However, in 
both cases the effective Hamiltonians are the same. We also give the general expressions 
of excited vibronic state energies. Secondly, we derive expressions for symmetry-adapted 
phonon states so that all calculations use these phonon states directly rather than having to 
extract them by very laborious algebra from the symmetry-adapted vibronic states. Thus 



812 

all results can be obtained by evaluating directly both the reduced matrix elements of 
creation and annihilation operators within the phonon states and the phonon overlaps. The 
calculations are therefore more direct and much simpler. Thirdly, using the improved 
formalism, we have calculated the second-order WS for the sh.ongly coupled E @ e JT 
system for which the general method of Polinger @tal (1991) was inapplicable. 

The main advantage of the above type of calculation over many others is that it is 
analytical, so the underlying physics is clearly in view. Thus differences between various 
systems are relatively transparent. The only numerical work involved is that needed to obtain 
the final graph and results for different sets of the physical parameters are obtained directly. 
In contrast, a totally numerical approach involving lengthy independent diagonalization 
routines requires a good choice of the initial basis states to obtain the required accuracy and 
thii is not always easy to achieve. (See, for example, the discussions of O'Brien (1990) 
and Polinger et ai (1993) on the calculation of the inversion splitting in T O  t2 JT systems.) 
Finally, we note that the approach throughout this paper uses IR components. An alternative 
would be to use a coupling scheme throughout (as in atomic spectroscopy). Our choice of 
using components has been made in order to produce results that can be interpreted and 
used directly. 

Y M Liu et ai 
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